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ABSTRACT

Forecast uncertainty associated with the prediction of snowfall amounts is a complex superposition of the

uncertainty about precipitation amounts and the uncertainty about weather variables like temperature that

influence the snow-forming process. In situations with heavy precipitation, parametric, regression-based

postprocessing approaches often perform very well since they can extrapolate relations between forecast and

observed precipitation amounts established with data from more common events. The complexity of the

relation between temperature and snowfall amounts, on the other hand,makes nonparametric techniques like

the analog method an attractive choice. In this article we show how these two different methodologies can be

combined in a way that leverages the respective advantages. Predictive distributions of precipitation amounts

are obtained using a heteroscedastic regression approach based on censored, shifted gamma distributions, and

quantile forecasts derived from them are used together with ensemble forecasts of temperature to find analog

dates where both quantities were similar. The observed snowfall amounts on these dates are then used to

compose an ensemble that represents the uncertainty about future snowfall. We demonstrate this approach

with reforecast data from the Global Ensemble Forecast System (GEFS) and snowfall analyses from the

National Operational Hydrologic Remote Sensing Center (NOHRSC) over an area within the northeastern

United States and an area within the U.S. mountain states.

1. Introduction

Snow forecasts are not only of interest for recreational

activities like skiing, they are also vital for planning and

decision-making in various sectors of the economy such

as air and ground transportation, agriculture, construction,

and commerce. Especially in regions with complex terrain

like the westernUnited States, convection-permitting high-

resolution (#4km) models are needed to adequately rep-

resent the spatial differences in precipitation between

mountains and valleys (Gowan et al. 2018). Current oper-

ational high-resolution guidance like the North American

Mesoscale Forecast System 3-km continental U.S. nest

(Rogers et al. 2017) is only available for up to 60 h

ahead, and so it is useful to explore statistical post-

processing algorithms that can correct coarser medium-

range (i.e., several days ahead) snowfall forecasts to reflect

expected finer-scale variability and represent the as-

sociated forecast uncertainty.

The uncertainty around medium-range forecasts of

precipitation amounts like those from NOAA’s Global

Ensemble Forecast System (GEFS; Zhou et al. 2017)

can be substantial (Scheuerer and Hamill 2015, their

Fig. 6). For snowfall amounts, additional uncertainty

about the precipitation type (rain, snow, etc.) and the

snow-to-liquid ratio (SLR) if the precipitation type is

snow must be taken into account. This challenge is il-

lustrated in Fig. 1 where both analyzed precipitation

(i.e., liquid water) amounts and analyzed snowfall over

Utah, western Colorado, and southern Wyoming are

shown for a 24-h period ending at 1200 UTC 18April 2015.
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Over the mountainous regions, temperatures were cold

enough for precipitation to fall as snow. At the lower

elevations in southeastern Wyoming and north-central

Colorado (near the right margin of both plots) heavy

precipitation but little or no snow accumulation was re-

ported. Forecast uncertainty about the temperature in

these areas translates into uncertainty about snow accu-

mulations that could have been quite large if tempera-

tures were low enough for the heavy precipitation to fall

as snow instead of rain. The coarse resolution of topog-

raphy in global forecast systems does not permit an

adequate representation of the spatial variability of

temperature in complex terrain (Dabernig et al. 2017,

their Fig. 4), and we may therefore expect that the

explicitly modeled snow accumulations produced by

modern operational systems (e.g., Zhao and Carr 1997)

at the medium range suffer from even stronger local

biases than forecasts of precipitation amounts. These

systematic biases could be addressed by statistical post-

processing of explicitly modeled snow accumulations (if

available) directly, but by doing so the different sources of

forecast uncertainty about temperature and precipitation

amounts would be lumped together. Moreover, it would

be difficult to guarantee consistency between forecasts of

precipitation and snow accumulations, and we therefore

prefer to address biases in precipitation and temperature

forecasts separately.

The overall uncertainty about snow accumulation is

a combination of the uncertainty about precipitation

accumulation, precipitation type, and SLR. One of the

challenges is that these three quantities are not in-

dependent of each other. Figure 2a) shows a scatterplot

of SLR versus snow water equivalent (SWE) at the

analysis grid point closest to Alta ski resort. SWE and

SLR were derived based on Stage-IV precipitation an-

alyses andNOHRSC snowfall analyses (see section 2 for

details about these datasets), only days with at least

2.5mm of accumulated precipitation and at least 5 cm of

accumulated snow were considered. Both Fig. 2a and a

similar plot based on observed precipitation and snow

data at Collins Snow Study Plot (CLN) at Alta ski resort

(Alcott and Steenburgh 2010, their Fig. 5e) show that

SLR tends to decrease as the amount of SWE increases.

This tendency can be observed at most of the analysis

FIG. 1. Analyzed liquid water accumulations (Stage-IV precipitation analyses) and analyzed snowfall amounts

(NOHRSC snowfall analyses) over Utah, western Colorado, and southern Wyoming for the 24-h period ending at

1200 UTC 18 Apr 2015.

FIG. 2. Scatterplots of snow water equivalent (Stage-IV precipitation analyses), maximum wet-bulb temperatures aloft, and 80-m wind

speeds (both based on 12–36-h GEFS forecasts) against SLR at the analysis grid point associated with Alta ski resort in Utah. SLR was

calculated based on Stage-IV precipitation analyses and NOHRSC snowfall analyses, only days with at least 2.5mm of accumulated

precipitation and at least 5 cm of accumulated snow were considered.
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grid points with a sufficient number of snow days and

was also noted by Ware et al. (2006), who studied the

relation between SLR and various predictors including

SWE at 28 stations across the United States. Part of the

uncertainty about snowfall predictions therefore cancels

out (e.g., if SWE amounts are higher than expected, this

also entails higher snowfall amounts, but the increase

is less than proportionally due to the simultaneous de-

crease in SLR), and this should be taken into account

when constructing a probabilistic snow forecast.

The most important predictor for determining the pre-

cipitation type and SLR is the temperature in the snow-

forming layer (Ware et al. 2006; Alcott and Steenburgh

2010). Following up an earlier study by Roebber et al.

(2003), Ware et al. (2006) consider a low–midlevel tem-

perature factor derived using a principal component

analysis of vertical temperature profiles. Alcott and

Steenburgh (2010) studied the correlation between

SLR at Alta ski resort (where the surface pressure is

around 690 hPa) and the temperature at various pres-

sure levels, and they found a strong and near-constant

correlation across all available levels from 850 to

400 hPa. The specific choice of the temperature pre-

dictor considered in our study, the maximum wet-bulb

temperature between 609.6m (2000 ft) above ground

level and 400hPa, is compatible with these findings and

was made because this quantity (‘‘maximum wet-bulb

temperature aloft’’) is one of the weather elements in-

cluded in NOAA’s National Blend of Models (NBM), a

nationally consistent and skillful suite of calibrated fore-

cast guidance in which the algorithm proposed in this

paper may be included in the future.

Other predictors that can be informative for SLR

are wind speed and relative humidity (Ware et al. 2006;

Alcott and Steenburgh 2010). Alcott and Steenburgh

(2010) note that the correlation between wind speed and

SLR peaks at 650 hPa (600 hPa on the subset of high

SWE events), and we therefore consider 80-m wind

speeds as a predictor in our study as these are the closest

match to the findings by Alcott and Steenburgh (2010)

among the available NBM weather elements. For rela-

tive humidity, our attempt to be compatible with avail-

able NBM weather elements leaves us with 2-m relative

humidity as the only option. Figure 2b shows that the

maximum wet-bulb temperature aloft predictor (here:

interpolated 12–36-h forecasts by the GEFS as de-

tailed below) is related to SLR in a rather nonlinear and

heteroscedastic way. For the ‘‘80-m wind speed’’ pre-

dictor Fig. 2c suggests that there is barely any evident

relationship with SLR. If probabilistic forecasts are to

be generated where not just the mean but also the un-

certainty about SLR needs to be explained by these pre-

dictors, it is clear that constructing a parametric statistical

model for that purpose is rather challenging; this suggests

that a nonparametric approach like an analog method

(Sievers et al. 2000; Hamill and Whitaker 2006; Delle

Monache et al. 2013) is a preferable choice. On the other

hand, using a parametric approach to postprocess NWP

forecasts of precipitation amounts has advantages over an

analog method since it represents the distribution better

(an analogmethod introduces sampling variability) and it

can extrapolate relations between forecast and observed

precipitation amounts established with data from com-

mon events to situations withmore extreme precipitation

(Scheuerer and Hamill 2015). We propose a new ap-

proach that combines an analog method with the para-

metric postprocessing technique proposed by Scheuerer

and Hamill (2015) in a way that leverages the respective

advantages.

A recent paper by Stauffer et al. (2018) also discusses

probabilistic prediction of snowfall amounts and uses

a parametric postprocessing approach for both pre-

cipitation and temperature. In contrast to the approach

presented here, their paper addresses the additional

challenge of disaggregating predicted snow accumula-

tions to an hourly temporal scale, and it derives snowfall

amounts based on a fixed temperature threshold to de-

termine the precipitation type and a fixed value for SLR.

The Stauffer et al. (2018) approach is not predicated on

the availability of high-quality snowfall observations, it

only requires observations of temperature and pre-

cipitation amount and is therefore more widely appli-

cable. If dependable snowfall observations or analyses

are available, however, the methods presented below

allow one to use that information for addressing the

complex relationship between temperature, precipita-

tion type, and SLR, and they can potentially yield more

accurate forecasts and a better representation of fore-

cast uncertainty than is possible with a fixed tempera-

ture threshold for rain versus snow and a fixed value

for SLR.

In section 2 we describe the forecast and analysis data

used in this study. Section 3 briefly reviews the analog

method and the censored shifted gamma distribution

approach proposed by Scheuerer andHamill (2015), and

explains how those two techniques can be combined in

order to generate an ensemble of snowfall forecasts

based on forecasts of precipitation, temperature, etc.

by the Global Ensemble Forecast System (GEFS). The

resulting probabilistic forecasts of snowfall accumula-

tions are evaluated in section 4, and are compared to

forecasts generated with the standard analog method.

We finally discuss some of the limitations of our

method in section 5. The analyses in this study have

been performed using the statistical software R (R Core

Team 2017).
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2. Data used in this study and data preprocessing

The postprocessing methodology discussed here is

applied to GEFS ensemble forecasts during the period

from October 2013 to May 2017. Forecast data were

obtained from the second-generation GEFS reforecast

dataset (Hamill et al. 2013), which consists of 11 en-

semble member forecasts, initialized at 0000 UTC every

day. The following weather variables were extracted

from this dataset:

d 6-h precipitation accumulations on a ;1/28 Gaussian

grid for forecast lead times up to 132 h;
d u/y components of wind at 80m on a ;1/28 Gaussian

grid for forecast lead times up to 132 h in 6-h

increments;
d ensemble mean 2-m temperature forecasts on a 18
Gaussian grid for forecast lead times up to 132 h in

6-h increments;
d ensemble mean surface pressure forecasts on a 18
Gaussian grid for forecast lead times up to 132 h in

6-h increments;
d ensemble mean 2-m specific humidity forecasts on a 18
Gaussian grid for forecast lead times up to 132 h in 6-h

increments;
d ensemblemean temperature forecasts on a 18Gaussian

grid at pressure levels 1000, 925, 850, 700, and

500 hPa for forecast lead times up to 132 h in 6-h

increments;
d ensemble mean geopotential height forecasts on a 18
Gaussian grid at pressure levels 1000, 925, 850, 700,

and 500 hPa for forecast lead times up to 132 h in 6-h

increments; and
d ensemble mean specific humidity forecasts on a 18
Gaussian grid at pressure levels 1000, 925, 850, 700,

and 500 hPa for forecast lead times up to 132 h in 6-h

increments.

The u/y wind components were converted to 80-m wind

speed forecasts, averaged over the 11 ensemble mem-

bers, and bilinearly interpolated to the ;0.048 snowfall
analysis grids (see below). Surface temperature, pres-

sure, and specific humidity forecasts were used to calculate

relative humidity forecasts and bilinearly interpolated to

the ;0.048 grid. Temperature and specific humidity fore-

casts at the different pressure levels were used to calculate

wet-bulb temperatures. These wet-bulb temperatures and

the geopotential heights were then bilinearly interpolated

to the ;1/28 Gaussian grid, and at this resolution the

maximum wet-bulb temperature aloft predictor was cal-

culated. This quantity is one of the weather elements in-

cluded in NOAA’s National Blend of Models (NBM) and

defined as the maximum temperature between 609.6m

(2000 ft) above ground level (AGL) and the 400-hPa level.

The wet-bulb temperature at 609.6m AGL was deter-

mined by vertical linear interpolation of both wet-bulb

temperature and geopotential height forecasts. The model

grid surface elevation was used as a baseline with respect

to which the height AGL is calculated, and the interpo-

lated temperature value corresponding to the interpolated

geopotential height of 609.6m AGL was selected. The

maximum wet-bulb temperature aloft was then estimated

as the maximum over this value and the wet-bulb temper-

ature at all pressure levels up to 500hPawith a geopotential

height larger than 609.6m AGL. Finally, this maximum

wet-bulb temperature aloft predictor was bilinearly inter-

polated to the ;0.048 snowfall analysis grid.
Gridded snowfall data used in our study comes from

National Operational Hydrologic Remote Sensing Center

(NOHRSC) snowfall analyses on a ;0.048 Gaussian grid

over the conterminous United States. For the time period

studied here (2013–17) these analyses are currently only

available for 24-h accumulation periods beginning and

ending at 1200 UTC. They use Stage IV precipitation

analyses (Lin 2011) to establish the total precipitation

amount associated with the first-guess snowfall. Snow-

to-precipitation ratios are derived from either NOAA’s

High-Resolution Rapid Refresh (HRRR) model if

HRRR has nonzero precipitation consistent with the

Stage IV precipitation analyses. Otherwise, a climatologi-

cal SLR and a temperature-based decision rule for snow

versus rain is used. This first guess is then updated with

quality-controlled snowfall observations in two assimila-

tion passes: the first pass mainly accounts for bias and SLR

differences, the second pass interpolates the actual differ-

ence between first-pass snowfall and observed snowfall.

For further details about theNOHRSC, version 2, snowfall

analyses see Clark (2017). For the hybrid postprocessing

method proposed below, we further need analyses of

6- and 24-h precipitation amounts, and the Stage IV

dataset is a natural choice since the first guess of the

NOHRSC snowfall analyses is based on these data.

Since snowfall analyses were only available for 24-h

accumulation periods, the predictors have to be aggre-

gated to this time scale. For precipitation this is done by

simply summing up the amounts predicted for the four

respective 6-h periods. For temperature and wind speed,

simple averaging may not be appropriate since both

quantities may vary over the course of 24-h period.

Following a suggestion by T. Alcott (2017, personal

communication), we weighed the four 6-h periods pro-

portional to the sum of the climatological average pre-

cipitation and the actual precipitation amount in each of

these periods. The resulting 24-h aggregation of tem-

perature and wind speed emphasizes the 6-h period(s)

where most precipitation occurs. During the training

periods, we use 6-h Stage IV precipitation accumulations
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as the ‘‘actual’’ precipitation amount that determines the

weights; during the verification periods our best estimate

of the actual precipitation amount is based on the GEFS

ensemble forecasts. These come with substantial un-

certainty, especially at longer lead times, and so we use

the ensemble mean of the augmented (see section 3b)

GEFS ensemble to smooth out unwarranted spatial detail

in theweights. Timing errors in the precipitation forecasts

can still result in suboptimal weights; this is why we base

the weights partly on climatological average precipitation.

If the forecasts were known to suffer from systematic

timing errors, it might be preferable to use forecast pre-

cipitation amounts to calculate the weights during both

training and verification period. If timing errors are non-

systematic, however, this alternative weighting strategy

would introduce an error at two places, and we there-

fore chose to calculate the weights during the training

period based on analyzed precipitation amounts so that

at least temperatures during the training period are

weighed optimally.

Both forecast and analysis datasets are composed

for two areas within the United States: one of them

(‘‘mountain region’’) is the area shown in Fig. 1 cov-

ering Utah, western Colorado, and southern Wyoming,

the other area (‘‘northeast region’’) covers several states

in the northeastern United States near the Atlantic coast

(see Fig. 5).

3. Statistical postprocessing methodology

a. Analog method

We use an analog method for statistical postprocess-

ing (Sievers et al. 2000; Hamill andWhitaker 2006; Delle

Monache et al. 2013) as a reference method and as one

of two components of the hybrid approach proposed in

section 3c. The main idea behind this technique is sim-

ple, yet very effective:

d choose a set of past dates where the values of the

predictors were similar to those associated with to-

day’s forecast, and
d form an analog forecast ensemble from the values of

the predictand on these dates.

In the present setup the predictand is 24-h snow accu-

mulation and the predictors are the GEFS ensemble

mean forecasts of 24-h precipitation accumulations (Pa)

and the 24-h weighted average (see section 2) of 6-h

maximum wet-bulb temperatures aloft (Ta). Additional

predictors like wind speed or relative humidity can be

added in a straightforward way, their utility is studied in

section 4e. The set of analog dates is chosen separately

for each grid point and lead time (using only forecasts

from that specific grid point), but since the interpolated

coarse-scale predictors are relatively smooth in space we

can expect that a similar set of analog events will be

chosen for nearby points. Denoting the predictor values

associated with today’s forecast with a superscript ‘‘t’’

and those associated with the forecast values at some

historic date d with a superscript ‘‘d,’’ we quantify the

dissimilarity Dd between the respective forecasts via

D
d
5w

Pa
j ffiffiffiffiffiffiffiffi

Pad
p

2
ffiffiffiffiffiffiffi
Pat

p j1w
Ta
jTad 2Tatj . (1)

Although it is common practice to use standardized

predictors for defining a dissimilarity measure, we chose

not to do that in the present context since we felt that it is

more important to account for the very different nature

of the distributions of the different predictors. Specifi-

cally, to address the high skewness in the distributions

of precipitation accumulations, we apply a square root

transformation before calculating absolute differences.

The coefficients wPa and wTa allow one to emphasize

predictors that are thought to have the strongest link

with snowfall amounts, and they can also compensate

for differences in the weighting of predictors that result

from their different scales that were not accounted for

by standardization. Without loss of generality we can fix

wTa 5 1, and we study the effect of different choices of

wPa in section 4a.

Another tuning parameter that affects the perfor-

mance of an analog method is the size of the analog

ensemble (i.e., the number nana of similar past dates

chosen by an analog algorithm). While larger ensembles

reduce sampling variability and thus yield a better rep-

resentation of the forecast distribution, additional

members are increasingly dissimilar from today’s fore-

cast and can therefore be detrimental to the accuracy of

the analog ensemble. Hamill et al. (2006) applied an

analog method to postprocess precipitation reforecasts

from a previous version of NCEP’s Global Forecast

System and show that the optimal ensemble size de-

pends on various factors including training sample size

(see their Fig. 7). In section 4awe therefore test different

analog ensemble sizes and study their role in the per-

formance of the analog method for snowfall amounts.

b. Nonhomogeneous regression based on censored
shifted gamma distributions

One of the challenges with an analog method is that

for unusual values of the predictors (e.g., extreme pre-

cipitation amounts) it becomes very difficult to find good

analog dates. When several predictors are considered

simultaneously, and analog dates with sufficiently simi-

lar forecast values for all predictors have to be found,

this challenge becomes even harder. In these situations
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parametric, regression-based postprocessing approaches

have the advantage that they can extrapolate relations

between forecast and observed values established with

data from more common events. For precipitation

amounts, Scheuerer and Hamill (2015) proposed an

approach based on censored shifted gamma distribu-

tions that links the distribution parameters to statistics

of the GEFS precipitation forecasts. In this study we

use a slightly modified version of their method, de-

scribed in section 3a of Scheuerer and Hamill (2018).

The following is a brief review of the main ideas:

Ensemble augmentation: Instead of just using the

ensemble forecasts at the nearest forecast grid

point, we use all forecasts within a certain neighbor-

hood of the location of interest. Forecast grid points

within this neighborhood are weighted proportion-

ally to their predictive skill as described in section

3.2 of Scheuerer et al. (2017b).

Ensemble statistics: The information in this aug-

mented GEFS ensemble is summarized by three

statistics: the ensemble probability of precipitation

(POP), the ensemble mean (EM), and the ensem-

ble mean absolute difference (MD, a measure of

ensemble spread). Since the augmented ensemble

contains forecasts from different grid points and

thus different climatologies, the forecasts must be

spatially homogenized before calculating the en-

semble statistics. Here, we work with multiplicative

forecast anomalies ~xidxi/xcl derived from the 11

GEFS raw ensemble member forecasts x1, . . . , x11
at each particular forecast grid point by dividing

them by the climatological average xcl of the fore-

cast precipitation amounts at this grid point.

Predictive distributions: Censored, shifted gamma

distributions (CSGDs) are used to model forecast

uncertainty. They are parameterized by the mean

and standard deviation m and s of a gamma distri-

bution, and by an additional shift parameter d that

shifts the distribution toward the negative values.

The shifted distribution is then censored at zero,

which allows one to model occurrence and intensity

of precipitation simultaneously.

Climatological distributions: Since the ensemble sta-

tistics are based on multiplicative forecast anoma-

lies, the local climatological information has to be

added back in when the predictive distributions

are defined. This is achieved by first fitting a

climatological CSGD to the analyzed precipita-

tion amounts at each grid point; the resulting

parameters mcl, scl and dcl are included in the

regression equations that determine the predic-

tive CSGD parameters.

Regression equations: The GEFS ensemble sta-

tistics are finally linked to the predictive CSGD

parameters via

m5
m
cl

a
1

log(11 f[exp(a
1
)21](a

2
1 a

3
POP1 a

4
EM)g) ,

s5s
cl

 
b
1

ffiffiffiffiffiffi
m

m
cl

r
1 b

2
MD

!
. (2)

The shift parameter is kept fixed at d5 dcl.

A separate set of model parameters is fitted for each

analysis grid point, each forecast lead time, and each

month, using data from645days around the 15th of the

respective month during the years set aside for training.

This way, a sufficient amount of training data is available

to permit a stable estimation of the model parameters,

while allowing the fitted model to vary in space and over

the course of the year in order to address spatially and

seasonally varying biases. Scheuerer and Hamill (2015)

demonstrate that this regression-based approach yields

sharper forecast distributions than an analog method for

precipitation amounts, and is more likely to preserve a

strong forecast signal in the raw GEFS ensemble fore-

casts while still being statistically reliable.

c. Combining the CSGD and an analog method

We now show how the two approaches presented

above—analog method and CSGD-based nonhomoge-

neous regression method—can be combined in order to

leverage the respective strengths. The general idea can

be summarized as follows:

d the dissimilarity measure Dd in (1) used to selecting

the analog dates depends on the Ta predictor in the

same way as before (i.e., dissimilarity is defined by

comparing today’s and historic GEFS ensemble mean

forecasts);
d the Pa predictor, on the contrary, is first postprocessed

as described in section 3b, and dissimilarity is defined

by comparing the values of a sample from the resulting

predictive distribution for Pa with analyzed Pa at the

historic dates; and
d analog dates are found separately for the different Pa

sample values, and a predictive snowfall ensemble is

composed of the snowfall amounts on these dates.

For a more formal description, denote by x+ and y+
forecast and analyzed quantities, respectively, where

+ is either ‘‘Snow,’’ ‘‘Pa,’’ or ‘‘Ta.’’ Further denote by

p(ySnowjxPa, xTa) the conditional probability distribu-

tion function (PDF) of ySnow given xPa and xTa. Under

the following assumptions:
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d the predictor xTa is negligible for forecasting yPa;
d given xTa and yPa, the predictor xPa has no additional

information about ySnow;

this conditional PDF can be written as

p(y
Snow

jx
Pa
, x

Ta
)5

ð‘
0

p(y
Snow

jy
Pa
, x

Ta
) p(y

Pa
jx

Pa
) dy

Pa
,

(3)

and this representation suggests that we can split up the

statistical model in two separate steps:

1) Generate a forecast distribution p(yPajxPa) for yPa using
the CSGD-based nonhomogeneous regression method

described in section 3b. This forecast distribution can

be thought of as removing possible biases from xPa and

representing the associated forecast uncertainty.

2) Use an analog approach to predict ySnow based on

the predictors xTa and yPa (i.e., based on a predictive

sample of analyzed precipitation amounts instead

of GEFS precipitation forecasts).

Using yPa instead of xPa in step 2 has the benefit that the

challenging (but crucial) task of predicting precipitation

amounts and quantifying the associated uncertainty is

handled by a parametric approach with demonstrated

good performance in the situation of more extreme

events. Finding analog dates separately for the different

Pa sample values yPa corresponding to low, moderate,

and heavy precipitation then makes it easier to identify

dates with sufficiently similar values for both predictors.

Meanwhile, using an analog approach is a convenient

way to deal with the highly nonlinear and complex re-

lation between temperature and snowfall amount.

Figure 3 gives a schematic overview over the steps

involved in the construction of a 50-member snow-

fall forecast ensemble based on the predictive CSGD

for the analyzed precipitation amounts and the

Ta predictor. First, a systematic sample of size 10 is

generated as the subset q5, q10, . . . , q50 of the quantiles

q1, . . . , q50 of today’s predictive CSGD with levels

ak 5 (k/51), k5 1, . . . , 50. This sample represents a

calibrated probabilistic forecast, but the sample values

take the role of the analyzed precipitation amount yPa in

(3). Our particular choice of a 10-member sample is

biased toward larger Pa amounts because the 10 quantile

levels are not symmetric around 0.5; this is inten-

tional and the rationale behind this choice will be

explained below.

The analog method is now applied sequentially: for

each value yPa (starting with the largest) in the predictive

sample, five analog dates with similar yPa and similar xTa
are selected, where similarity is defined as in (1). Mul-

tiple selection of the same analog date while cycling

through the 10 sampled Pa values is allowed. This po-

tentially reduces the effective analog ensemble size in a

data-driven way: if a large training sample is available,

different values of yPa likely result in different analog

dates, and the effective ensemble size is close to 50.

A small training sample and several unusually large

values of yPa, on the contrary, likely result in the same

date being selected multiple times, which reduces the

effective ensemble size but avoids a bias toward smaller

(more common) values of yPa. Multiple selection of

analog dates can be particularly beneficial at very dry

locations where, for a wet forecast, there may not be a

sufficient number of historic dates where analyzed Pa

amounts were nonzero. Where possible, we only use

historic dates with at least 1-mm analyzed Pa as analog

candidate dates for a sample value yPa . 0, since for very

light precipitation events the SLRs implied by compar-

ing the analyzed snowfall and precipitation amounts

become less and less dependable. At very dry locations,

the wettest 10 dates are considered as analog candidate

dates, even if some of them have Pa less than 1mm. By

allowing multiple selection of analog dates we can still

always assemble a 50-member snowfall ensemble.

FIG. 3. Schematic illustration of how the parametric CSGD method is combined with an

analog method in order to generate a forecast ensemble of snowfall amounts based on the

predictive distribution for precipitation amounts and GEFS ensemble mean forecasts of

maximum wet-bulb temperature aloft.

MARCH 2019 S CHEUERER AND HAM I LL 1053

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/M
W

R
-D

-18-0273.1 by N
O

AA C
entral Library user on 30 June 2020



Even with the sequential analog search procedure

outlined above there is no guarantee that the 50-member

Pa ensemble corresponding to the selected analog dates

is a good representation of the predictive distribution for

Pa. We can further improve the quality of the snowfall

ensemble by deriving an adjustment factor fk for each

analog ensemble member k that modifies the pre-

cipitation amount ak such that the ensemble of adjusted

values ~akdfk ak yields a perfect representation of the

predictive CSGD. Assume that the values a1, . . . , a50 are

in ascending order (otherwise reorder the dates). We

know that q1, . . . , q50 is an optimal representation of the

calibrated predictive distribution for Pa, and defining

fkdqk/ak therefore yields an optimal adjustment of

precipitation amounts. What is the appropriate adjust-

ment for the corresponding snowfall amount sk? If qk 5 0,

we simply set ~skd0. Otherwise (i.e., if qk . 0), we most

likely have ak . 0 due to the wet bias hat was intention-

ally introduced into the analog search; without the bias,

one would have to deal with situations where some ak 5 0

needs to be mapped to qk . 0, and a multiplicative ad-

justment as suggested above is not possible. Our discus-

sion of Fig. 2a suggests a less than proportional increase

of snowfall amounts with increasing amounts of SWE,

and simply defining ~skdfk sk may therefore not be ap-

propriate. Some exploratory analysis shows that for yPa .
1mm, ySnow ; y0:75Pa is a good approximation for the re-

lationship between snowfall and SWE amounts at most

analysis grid points, and we therefore define the adjusted

snowfall amount ~sk as

~s
k
d

(
s
k

for a
k
# 1mm

f 0:75
k s

k
for a

k
. 1mm

. (4)

Note that this also covers the case where the precipitation

type is rain, and ~sk 5 sk 5 0. A beneficial side effect of this

adjustment is that snowfall amounts associated with the

same analog date are mapped to different values because

they are matched to different predictive Pa quantiles. This

way, they have the same precipitation type and SLR, but

the adjustment still increases the diversity in the ensem-

ble and partially offsets the decrease in effective ensemble

size due to multiple selection of analog dates. The adjust-

ment also removes the wet bias introduced through the

asymmetric sampling of the predictive CSGD.

The schematic illustration in Fig. 3 is based on a case

with rather large forecast precipitation amounts and ex-

emplifies the advantages of the proposed hybrid scheme

over the standard analog approach described in section 3a.

It is clear that it is easier to find appropriate analog dates

for the individual values of yPa (which sample the entire

range of possible predicted outcomes for Pa) since only

five dates are required for each sample value. Even then it

is difficult to find analog dates for the larger values of yPa,

and this is where the adjustment yields the biggest benefit:

it increases some of the larger analog ensemble members,

thus generating an adjusted ensemble where Pa values

represent the calibrated forecast distribution including the

tail with more extreme precipitation amounts. At the same

time it separates the Pa (and snowfall) values associated

with the same analog date.

Based on the adjusted ensemble of snowfall amounts,

probabilistic forecasts such as probabilities of threshold

exceedance or quantile forecasts and prediction intervals

can be derived. Figure 4 shows 12–36-h ahead quantile

forecast (for levels 0.1, 0.5, and 0.9) of snowfall amounts

over the mountain region and the corresponding analyzed

field. The forecasts are for the example date discussed in

Fig. 1 and exemplify the uncertainty about the precipitation

type and SLR that comes on top of the forecast uncertainty

about precipitation amounts. The underlying GEFS fore-

casts have largely missed the heavy precipitation over the

UintaMountains in northeasternUtah, but they provided a

sufficiently strong signal for precipitation over southeastern

Wyoming and northern Colorado. The uncertainty about

temperature, however, results in wide prediction intervals,

especially over southeastern Wyoming where conditions

are right at the border between rain and snow, and thus

various scenarios from almost no snow to rather high snow

accumulations are possible.

An example of a northeast coastal snowstorm and

associated 12–36-h ahead quantile forecast (this time for

levels 0.25 and 0.75) is shown in Fig. 5. Even at these

shorter lead times the forecast of the area of most in-

tense snowfall is somewhat displaced: heavy snowfall is

predicted for southeasternMassachusetts, while the band

of heavy snowfall that actually occurred further inland is

not covered by the central 50% prediction interval. At

longer lead times (not shown) the forecast signal was

rather weak everywhere in this domain, and the observed

event falls in the tail of the distribution. This is another

reminder of the difficulties associated with snowfall pre-

diction, and it raises the question of how much skill one

can expect from these probabilistic forecasts. This will be

studied systematically in the next section.

4. Verification of the probabilistic snowfall
predictions

We compare probabilistic, GEFS-based snowfall

forecasts generated by the standard analog method de-

scribed in section 3a and by the hybrid parametric/analog

scheme proposed in section 3c. Each month is processed

separately, and only the months November–April where

snowfall is most common in the two study areas are

considered for verification. The four cool seasons for
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which forecast and observation data are available

(2013/14, . . . , 2016/17) are cross validated (i.e., one cool

season is held out for validation), probabilistic fore-

casts are generated based on training data from the

three remaining cool seasons, and the held-out season is

cycled through so that we obtain verification results for all

four cool seasons that were obtained with independent

training and validation datasets.

a. Sensitivity to tuning parameters

The performance of the analog method for snowfall

amounts described in section 3a depends on two tuning

parameters: the number of selected analog ensemble

members nana and the weight wPa in the dissimilarity

measure Dd in (1). The other weight was fixed at wTa 5 1

without loss of generality since only the relative weight

of the different predictors matters. In this subsection we

study the impact of different choices of nana and wPa on

the quality of the resulting snowfall analog ensemble.

The same two tuning parameters are also part of the

analog component of the proposed hybrid parametric/

analog scheme. In our description of this method in

section 3c we have assumed nana 5 50 and pointed out

that the effective analog ensemble size can be smaller

because the proposed algorithmpermitsmultiple selection

of analog dates. However, we can still vary nana in this

FIG. 5. Analyzed snowfall amounts over the northeast region for the 24-h period ending at 1200UTC 27 Jan 2015, andGEFS-based, 1-day-

ahead quantile forecasts obtained with the hybrid parametric–analog scheme described above.

FIG. 4. Analyzed snowfall amounts over the mountain region for the 24-h period ending at 1200 UTC 18 Apr

2015, and GEFS-based, 1-day-ahead quantile forecasts obtained with the hybrid parametric–analog scheme

described above.
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algorithm and reduce the number of quantiles used

to represent the predictive distribution of precipitation

amounts accordingly. We assess the predictive perfor-

mance of the snowfall ensembles generated with the two

different methods and different values of nana and wPa by

using the sample version [Grimit et al. 2006, their Eq. (3)]

of the continuous ranked probability score (CRPS), that is,

CRPS(x, y)5
1

n
ana

�
nana

i51

jx
i
2 yj

2
1

2n2
ana

�
nana

i51
�
nana

j51

jx
i
2 x

j
j , (5)

where x5 (x1, . . . , xnana) are the ensemble member

forecasts and y is the verifying observation, and a lower

score means better performance. The CRPS is a com-

mon measure for the overall performance of probabi-

listic forecasts that takes both reliability (‘‘Does the

ensemble provide an accurate representation of forecast

uncertainty?’’) and sharpness (‘‘Is the ensemble spread

as small as possible, given reliability?’’) into account.

Figure 6 shows the average CRPS as a function of wPa

and nana where averages are taken over all grid points

in the respective region and all days in January during

the four cool seasons considered in this study. Only

results for the forecast lead time period 60–84 h ahead

are shown here (additional plots for different forecast

lead times and different months are provided in online

supplemental material A). The conclusions about the

optimal analog ensemble size for our implementation

of an analog method for snowfall amounts are in line

with those reported by Hamill et al. (2006) for pre-

cipitation amounts in that the optimal nana increases

with forecast lead time. This is because larger ensem-

bles reduce the sampling variability, but this comes at

the expense of selecting less similar analog dates. At

short forecast lead times where the GEFS forecasts of

the predictors Pa and Ta have relatively good skill, a

high degree of similarity of today’s forecasts and the

forecasts at the analog dates is very important; at lon-

ger forecast lead times where the GEFS forecast skill is

lower, the optimal trade-off shifts toward a reduction in

sampling variability even if that goes along with a lower

degree of similarity of some analog dates. This trade-

off is very different for the hybrid method proposed in

section 3c where a reduction in the ensemble size al-

ways results in lower performance compared to the

proposed choice of nana 5 50. As explained above, this

is because the effective ensemble size for this method is

FIG. 6. CRPSs for the standard analog method and the hybrid parametric–analog approach using different ensemble sizes and weights

for the Pa predictor. The scores shown here are averages over all grid points in the respective region and all days in January during the four

cool seasons considered in this study.
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often smaller than nana, especially if more extreme pre-

cipitation events are forecast by the GEFS.

With regard to the weight coefficient we find that the

snowfall analog method performs best with values

wPa ’ 3 in January and wPa ’ 2 in April. A possible ex-

planation of this dependence on the season is that in

winter it is very likely that the precipitation type is

snow at most locations, and so the forecast precipitation

amount is more important for predicting snow accumu-

lations. In spring and fall, on the contrary, the de-

termination of precipitation type plays a bigger role for

predicting the range of outcomes for snow accumulations,

and therefore the temperature predictor carries some-

what more weight. Sensitivity to the choice of wPa is

rather low for the hybrid parametric/analog scheme, but

generally higher values wPa ’ 4 or wPa ’ 5 are preferred.

This is likely because Dd is now based on predictive

samples of analyzed precipitation. These samples already

represent a range of possible outcomes, and so each in-

dividual sample value should be matched more closely.

Based on the conclusions drawn from Fig. 6 (and the

additional plots provided in supplemental material A)

wemake the following parameter choices for our analog

method for the subsequent analyses: we use wPa 5 3

during the winter months and wPa 5 2 during spring and

fall. Further, we let the ensemble size increase with

forecast lead time and use nana 5 151 5tlead, where tlead is

the forecast lead time in days (e.g., 3 for the lead time

period of 60–84 h ahead). For the hybrid parametric/

analog scheme we use nana 5 50 and wPa 5 4 for every

month and all forecast lead times. For optimal perfor-

mance in an operational setting one could select opti-

mized parameters nana and wPa for each month and each

lead time, possibly even separately for each location if

the training sets are sufficiently large so that overfitting

is not a concern. A brute force optimization as described

by Junk et al. (2015) could be performed to make that

selection without the need for any user interaction. Our

parameter choices motivated by the above sensitivity

analysis are not necessarily the optimal choice in every

single situation, and the scores obtained with them

might differ from the scores that could be obtained via

brute force optimization of the tuning parameters.

However, we expect the results obtained with our pa-

rameter choices to be close to optimal and robust against

overfitting.

b. Reliability

One requirement for probabilistic forecasts to be

useful is reliability, the property that an event predicted

to occur with probability p occurs with a relative fre-

quency ’p when all verifying observations associated

with forecast probabilities ’p are considered. Here, we

study the events of snow accumulations exceeding 1 cm,

10 cm, and 25 cm, respectively, for forecast lead times of

1 day, 3 days, and 5days ahead. Reliability diagrams for

forecasts obtained with the hybrid parametric/analog

method with cases pooled across all grid points within

our study area, all four verification years and all six cool

season months are shown in Figs. 7 and 8 (reliability

diagrams for the analog method are provided in sup-

plemental material B). Over the mountain region, the

probability forecasts derived from the postprocessed

snowfall ensembles are almost perfectly reliable for

lead times of 1 and 3days, but for 5 days of forecast lead

time they become slightly overconfident. A look at

the reliability diagrams for precipitation amounts (not

shown here) reveals that the overconfidence of the

snowfall forecasts is inherited from the postprocessed

precipitation forecasts; the overconfidence of those can in

turn be explained by the degradation of the signal-to-

noise ratio of the raw GEFS forecasts in combination

with relatively small training samples compared to other

applications in which the CSGD-based nonhomogeneous

regression method was used. Over the northeast region,

reliability is not quite as good with reliability curves

for several threshold and forecast lead time suggesting

that the underlying exceedance probability forecasts are

somewhat underconfident. Except for the 1-cm threshold

at 12–36-h forecast lead time, however, departures from

the diagonal aremostly within the boundaries compatible

with sampling variability.

c. Brier skill scores

With reliability being established, the next important

validation aspect concerns the skill of the probabilistic,

GEFS-based snowfall forecasts relative to climatology.

Considering again probability forecasts of threshold

exceedance, we study Brier skills scores of both standard

analog ensemble forecasts and hybrid parametric/

analog ensemble forecasts. Denote by pan,i and phy,i the

respective probability forecasts for verification case

i, and by pcl,i the corresponding climatological relative

frequency of exceedance. The latter were calculated

separately for each analysis grid point and each month,

using snowfall analysis data from 645days around

the 15th of the respective month during all four cool

seasons. Apart from the fact that we did not cross vali-

date the data used to calculate these climatological ex-

ceedance probabilities, this way of composing these

datasets is similar to how the training data for the dif-

ferent postprocessing methods were composed; the un-

derlying idea is again that sufficiently large datasets are

required to obtain stable estimates of climatological

exceedance probabilities, while a reasonable climatology

needs to account for spatial and seasonal variability.
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Denote by oi the verifying binary observation (i.e., one

for exceedance, zero for nonexceedance). We then cal-

culate the mean Brier scores over N cases (all analysis

grid points within the respective study area times all four

cool seasons):

BS
+
5

1

N
�
N

i51

(o
i
2 p

+,i
)2, (6)

where+ is either ‘‘an,’’ ‘‘hy,’’ or ‘‘cl,’’ and depict the Brier

skill scores

BSS
+
5 12

BS
+

BS
cl

(7)

for the analog and the hybrid method in Fig. 9. Relating

the Brier scores of the two postprocessing schemes to

climatological scores allows one to judge how much in-

formation beyond simple climatological averages the

respective forecasts can provide, with themaximum skill

being 1 and values less or equal to 0 suggesting that the

method provides probabilistic guidance that does not

FIG. 7. Reliability diagrams for probability forecasts obtained with the hybrid parametric–analog scheme over the mountain region.

The inset histograms depict the frequency with which the different forecast probabilities were issued. The vertical bars represent 90%

confidence intervals obtained by bootstrap resampling.
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add any value over climatological guidance. To assess

whether the Brier score differences between the two

methods are statistically significant, we perform one-

sided Wilcoxon signed-rank tests (Wilks 2011, chapter

5.3) of the null hypothesis that the Brier scores obtained

with the analog method are lower (i.e., better) or equal

to those obtained with the hybrid parametric/analog

scheme. Following Hamill (1999) we assume indepen-

dence between the scores associated with different

days, but we account for spatial dependence by applying

the statistical tests to average Brier scores over the

respective domains. If we can reject the null hypoth-

esis at the 5% level, we will say that the forecasts

obtained with the hybrid scheme are significantly

better, and wemark the corresponding month with the

symbol ‘‘3’’ in the color of the respective forecast lead

time. Figure 9 shows that the proposed hybrid scheme

yields probabilistic forecasts that are significantly

more skillful than those obtained with the standard

analog approach at threshold 1 cm for all forecast lead

times, and at the higher thresholds for the forecast

lead time 12 to 36 h. For the 25-cm threshold in the

FIG. 8. As in Fig. 7, but for the northeast region.
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mountain region, the Brier skill scores obtained with

the hybrid scheme are better for all months and all

lead times, but the differences are not statistically

significant. For both methods, skill drops rapidly with

forecast lead time as a result of the combined forecast

uncertainty about precipitation amounts and tem-

perature, which makes prediction at longer leads

rather challenging, especially when the focus is on

heavy snowfall events.

d. Mean absolute error and interval skill scores

Quantile forecasts are another quantity of interest

that can be derived from either standard analog or hy-

brid parametric/analog ensemble. The ensemblemedian

can be considered as a deterministic snowfall forecast. It

is the optimal point forecast with respect to the mean

absolute error (Gneiting 2011), and we therefore mea-

sure its quality by the mean absolute error (MAE) skill

score with respect to the climatological median, calcu-

lated again from analyzed data from 645days around

the 15th of the respective month. In addition, we study

(12a)3100% central prediction intervals for a5 0:2

and a5 0:5, which are defined by the forecast quantiles

(q10, q90) and (q25, q75), respectively. A suitable perfor-

mance measure for these prediction intervals is the skill

score associated with the interval score

IS
+
5

1

N
�
N

i51

(u
i
2 l

i
)1

2

a
(l
i
2 y

i
)1fyi,lig

1
2

a
(y

i
2 u

i
)1fyi.uig

(8)

[see Gneiting and Raftery (2007) and references

therein] where y denotes the verifying analysis, and l, u

are the lower and upper bound of the prediction in-

terval, respectively. As in section 4c we use one-sided

Wilcoxon signed-rank tests to test whether the scores

obtained with the hybrid approach are significantly

better. The results depicted in Fig. 10 confirm our pre-

vious finding that snowfall predictions obtained with the

hybrid parametric/analog scheme are more skillful than

those obtained with the standard analog scheme. All

skill differences between the two methods are statisti-

cally significant for forecast lead time 12–36h, most of

them are significant for forecast lead time 60–84 h, and

for forecast lead time 108–132 h most of the score dif-

ferences in the mountain region and about half of the

score differences in the northeastern region are statis-

tically significant. Deterministic forecast skill drops

rapidly with forecast lead time, especially in the north-

east region, but the probabilistic information encoded

in the prediction intervals can still add value over cli-

matology, even though the prediction intervals can

FIG. 9. Brier skill scores for the standard analog method and the hybrid parametric–analog scheme. Statistically significant differences

between the two methods are marked with an ‘‘3.’’
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sometimes be very wide as discussed in the context of

the example in Fig. 4.

e. Use of additional predictors

So far, Ta (maximumwet-bulb temperature aloft) was

the only predictor considered in order to determine how

precipitation amounts translate into snowfall amounts.

As mentioned in the introduction and demonstrated in

the literature (Ware et al. 2006; Alcott and Steenburgh

2010), there are a number of other variables such as wind

speed or relative humidity that affect the snow-forming

process and therefore the SLR. While precipitation

amount and temperature arguably play the most im-

portant role for determining the snowfall amount, it is

worth studying if the results reported above can be im-

proved by including additional predictors related to

SLR in the analog component of the hybrid parametric/

analog scheme proposed in section 3c. Additional pre-

dictors may improve the (implicit) estimation of SLRs

associated with the snowfall ensemble forecasts, but

they could also have a negative impact since with every

additional predictor variable it becomes more chal-

lenging to find an analog date with similar values across

all of these predictors; a weather variable that is only

weakly related to snowfall amounts or is not well pre-

dicted by medium-range weather prediction systems

may introduce additional sampling variability in the

analog search and thus do more harm than good.

We consider two additional predictors already de-

scribed in section 2: 80-m wind speed forecasts and

2-m relative humidity forecasts. To extend the hy-

brid scheme proposed in section 3c we just need

to add an additional term ww80jW80d 2W80tj or

wRHjRHd 2RHtj to the dissimilarity measure Dd in

(1). For the month of January, Fig. 11 shows continu-

ous ranked probability skill scores (CRPSSs) for different

values ofww80 andwRH; the weightswTa andwPa are kept

fixed at the values determined in section 3a. Here, skill is

calculated relative to the hybrid ensemble forecast based

on Pa and Ta only. One-sided Wilcoxon tests are used to

test whether the decrease in CRPS obtained with the best

possible weight coefficient is statistically significant, the

resulting p values are printed into Fig. 11 next to the as-

sociated CRPSS values. Based on these results, we con-

clude that neither 80-m wind speed forecasts nor 2-m

relative humidity forecasts yield a significant skill im-

provement when included as additional predictors in our

hybrid scheme. The uncertainty associated with their

prediction is too large relative to their information con-

tent about SLR to make use of that information. This

conclusion can of course be different for different regions

and/or different forecast systems which could have more

FIG. 10.Mean absolute error and interval skill scores for 50% and 80% prediction intervals for the standard analogmethod and the hybrid

parametric–analog scheme. Statistically significant differences between the two methods are marked with an ‘‘3.’’
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favorable error characteristics with regard to these vari-

ables. It might also help to use related but different pre-

dictors that are not subject to the operational constraints

that we imposed on ourselves in order to be compatible

with NBM weather elements.

5. Discussion

We have proposed a hybrid scheme for probabilis-

tic snowfall forecasting that employs the CSGD-based

regression method to generate reliable predictive dis-

tributions for precipitation amounts, and then uses

samples from these predictive distributions along with

GEFS ensemble mean forecasts of maximum wet-bulb

temperature aloft as predictors in an analog scheme.

Our particular choice of predictors was based on existing

literature (Ware et al. 2006; Alcott and Steenburgh 2010;

T. Alcott 2017, personal communication), and availabil-

ity of these predictors as weather elements in NOAA’s

National Blend of Models (NBM) to which the pro-

posed algorithm might be added in the future. The

proposed hybrid method was demonstrated over an

area in the mountain west of the United States and a

coastal area in the northeastern United States, and

verification results over four cross-validated cool sea-

sons suggest that the resulting snowfall forecasts are

more skillful than those obtained with the standard

implementation of an analog method.

The proposed hybrid scheme leverages the flexi-

bility of an analog method in accounting for complex

forms of nonlinearity and heteroscedasticity in the

predictor–predictand relationships and the ability of a

parametric postprocessing method for precipitation

amounts to extrapolate predictor–predictand rela-

tionships from more common events to rare events. In

areas where snowfall is possible but uncommon, even

that strategy might fail to identify a sufficient number

of analog cases, and might have to be complemented

with concepts like supplemental locations (Hamill

et al. 2015; Lerch and Baran 2017), where a set of

additional locations with similar climatological and

terrain characteristics are identified for each location,

and the respective data at these supplemental loca-

tions is used to augment the training dataset at the

location of interest.

The focus of this paper was on predicting snowfall

amounts. Related quantities of interest like probability of

snow (vs rain) or snow-to-liquid ratio are predicted im-

plicitly, and could partly be reconstructed from the

snowfall ensembles generated by either analog or hybrid

method, but neither of the two techniques has been op-

timized for these quantities. Probabilistic forecasting

approaches have been proposed that target precipitation

type (Scheuerer et al. 2017a) and snow-to-liquid ratio

(Roebber et al. 2003) directly, and are more appropriate

for that purpose.

FIG. 11. CRPSSs of the snowfall ensemble forecasts obtained with the hybrid parametric–analog scheme with

addedW80 or RHpredictor, relative to the scores obtainedwith just the Ta predictor. The numbers are the p values

obtained from a one-sided Wilcoxon signed-rank test for significant reduction of CRPS.
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Both methods studied in this paper were demon-

strated with 24-h snowfall accumulations, since this is

the temporal resolution for which the NOHRSC snow-

fall analyses are currently available. Our strategy of

weighting the 6-h temperature and wind speed forecasts

proportionally to the corresponding precipitation amounts

emphasizes the values of these predictors during the period

wheremost of the precipitation occurs. However, it cannot

explicitly account for temperature variations—and thus

changes in precipitation type or SLR—during the 24-h

forecast periods. In the future, NOHRSC snowfall ana-

lyses at a 6-h temporal resolution will likely become

available, and this would mitigate this issue and also allow

us to address the NBM demand for 6-h snow forecasts

without having to use the ensemble copula coupling

technique for temporal disaggregation as proposed by

Stauffer et al. (2018).

An algorithm for statistical postprocessing of pre-

cipitation amounts that is tailored to the requirements of

NBM has been developed (Hamill and Scheuerer 2018)

and will soon be transferred to operations. The para-

metric/analog scheme for probabilistic forecasting of

snowfall amounts proposed here can be adapted and

used in combination with this technique, and thus be-

come part of NBM itself. For many of the forecast sys-

tems used in the NBM reforecast data are not available,

which poses some challenges since biases (e.g., in tem-

perature forecasts) may change with model version

changes. Since deterministic forecasts of maximum wet-

bulb temperature aloft are a weather element in the

NBM, however, one could simply use these (bias cor-

rected)NBM forecasts in (1) instead of the raw ensemble

mean and thereby avoid the implications of model ver-

sion changes. For the snowfall and precipitation analyses

used in our algorithm, on the contrary, it is vital to have a

record of as many years of data as possible to ensure that

the analog search can draw fromawide range of different

weather situations.
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